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We present spontaneous collapse models of field theories on a 1+1 null lattice,
in which the causal structure of the lattice plays a central role. Issues such
as ‘‘locality,’’ ‘‘nonlocality,’’ and superluminal signaling are addressed in the
context of the models which have the virtue of extreme simplicity. The for-
malism of the models is related to that of the consistent histories approach to
quantum mechanics.

KEY WORDS: Lattice; collapse models; nonlocality.

1. INTRODUCTION

The spontaneous collapse models of Ghirardi, Rimini, and Weber (GRW),
Pearle and others (see ref. 1 for a review) represent a promising direction of
research towards an observer independent theory of fundamental matter.
These models were first proposed in a nonrelativistic framework and since
then much attention has focused on the search for appropriately relativistic
models. This is not only important in its own right, but seems to be a
prerequisite to any hope of applying collapse model ideas to quantum
gravity.

We present a simple collapse model for a field theory defined on a
1+1 null lattice. It is inspired by work by Samols (2) and by the interpreta-
tion of the GRW model, (3) due to Bell, (4) in which it is the collapse centres
that are the ‘‘beables’’ or ‘‘real variables.’’ In the cited work, Bell proved a
result suggestive that Lorentz invariant collapse models can be formulated.



When the system of particles treated by the GRW model can be split into
two noninteracting subsystems, the time evolution of one subsystem has no
effect on the other, as in standard quantum mechanics. The work presented
here can be considered as further support for Bell’s expectation that a fully
Lorentz invariant collapse model with the ontology he proposed can be
constructed. In particular we prove, in the framework of the lattice collapse
model, the analogue of Bell’s result that, ‘‘Events in one system, considered
separately, allow no inference [...] about external fields at work in the
other.’’

Although the lattice collapse model is not itself Lorentz invariant, it is
not unreasonable to hope that Lorentz invariance will be attained in an
appropriate continuum limit. Moreover it is the view of some workers that
the aspect of spacetime that is fundamental and survives its encounter with
its quantum nemesis is its causal structure and, further, that this funda-
mental causal structure is discrete. (5) If one is looking for a development of
quantum theory suited to such beliefs about quantum gravity, our model
has many attractive features: it is discrete, there is a causal structure, and
there is a local evolution rule tied to that causal structure.

2. 1+1 LATTICE QUANTUM FIELD THEORY

We briefly review the basics of light cone lattice field theory in 1+1
dimensions, introduced in the study of integrable models. (6) We follow the
presentation of Samols (2) of this ‘‘bare bones’’ local quantum field theory.
Spacetime is a 1+1 null lattice, periodically identified in space of width
2N. We label the links of the lattice L or R depending on whether they are
left or right moving null rays. A spacelike surface, s, is given by the set of
links cut by the surface and is specified completely by the position of an
initial link and a sequence of N R’s and N L’s labeling the links it cuts
successively, moving from left to right, starting with the initial link. An
example is shown in Fig. 1, taken from Samols’ paper.

The local field variables, a, live on the links. At link l the variable a l

takes just two values, 0 or 1, and there is a (‘‘qubit’’) Hilbert space, Hl,
spanned by two states labelled by a l=0 and a l=1. At each vertex, v, the
local evolution law is given by a 4-dimensional unitary R-matrix, U(v), that
evolves from the 4-d Hilbert space that is the tensor product of the Hilbert
spaces on the two ingoing links to the 4-d Hilbert space on the two out-
going links.

A quantum state |YP on a spacelike surface, s, is an element of the
Hilbert space, Hs, that is the tensor product of the Hilbert spaces on all the
links cut by s. |YP is specified in the a basis as a normalised complex func-
tion of the variables on the links cut by a spacelike surface, s. Denoting
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Fig. 1. The light-cone lattice. st is a constant time slice; s is a general spacelike surface and
sŒ one obtained from it by an elementary motion across the vertex v.

this set of variables by a|s, the wave function is written Y(a|s). The unitary
evolution of the wavefunction to another spacelike surface sŒ is effected by
applying all the R-matrices at the vertices between s and sŒ, in an order
respecting the causal order of the vertices. In the simplest case, when only a
single vertex is crossed (to the future of s) the deformation of s to sŒ is
called an ‘‘elementary motion’’ and an example is shown in Fig. 1.

The R-matrices have been left unspecified to keep the discussion as
general as possible. In a conventional field theory, they will be uniform
over the lattice. One particular choice and a suitable continuum limit leads,
for example, to the massive Thirring model. (6)

The standard interpretation of the theory is expressed in terms of the
results of measurements of any hermitian operator associated with any
surface s. The state on s provides the appropriate probability distribution.
This standard theory suffers from at least two problems. Firstly, it cannot
be a theory of a closed system (the entire universe, say) since it requires
external, classical measuring agents. Secondly, serious threats of superlu-
minal signaling arise on trying to extend the interpretation to sequences of
measurements tied to spacetime regions more general than hypersurfaces
(see, e.g., refs. 7–9) There are strong motivations for trying to develop the
field theory into a realistic model in which predictions would be observer
independent and superluminal signaling does not occur. We will describe
our attempt in the next section but first, for illumination and comparison,
we give a brief description of another such model, the Samolsian dynamics.

The Samols model is a realistic, stochastic model of the above lattice
quantum field theory that agrees with the predictions of the standard
theory in situations where the latter makes predictions. The dynamics is
defined inductively. The initial conditions are that on some spacelike
surface, s0, the wavefunction is Y(a|s0

) and a configuration â|s0
is chosen

at random according to the quantum mechanical probability distribution
|Y(â|s0

)|2.
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Suppose we have a surface sk − 1 with wavefunction and some realised
field configuration on it. One of the possible elementary motions occurs
thus: at random one of the RL pairs is chosen from the sequence of links
that defines the surface sk − 1 and the surface is moved up across the the
associated vertex so that the pair is replaced by LR. As in Fig. 1, let this
motion be from links 1 and 2 to 1Œ and 2Œ. The wavefunction is evolved
forward to sk by the R-matrix of the vertex. Field values are realised
randomly on the new links according to the conditional probability,
fY(â|sk − 1 Q sk

), of realising values (â1Œ, â2Œ) given all the realised values â l up
to then, where

fY(â|sk − 1 Q sk
)=

|Y(a|sk
)|2

;a1Œa2Œ
|Y(a|sk

)|2
:
a|sk

=â|sk

(2.1)

This rule guarantees that the marginal probability distribution on a|sk
is

equal to the quantum mechanical one. It also means that there is no condi-
tional dependence of (â1Œ, â2Œ) on the realisations to the past of sk.

For each sequence of hypersurfaces generated by possible successive
elementary motions, c={s0, s1, s2,...}, this gives a probability distribution
on the sample space of all field configurations (on and) to the future of s0.
To get the unconditional probability distribution we sum these over c with
weights given by the stochastic rule for elementary motions stated above.

The essential structure of both the basic lattice quantum field theory
and the Samolsian dynamics is very simple and versatile. It requires only a
discrete causal structure and a local unitary evolution, so the generalisation
can easily made to the case of a quantum field theory on any locally finite
partial order (a ‘‘causal set’’ (5)) where the field variables live on the links, as
Samols describes.

3. GRW ON THE LATTICE

One of the defining features of Samolsian dynamics is that it is opera-
tionally equivalent to standard quantum theory in situations where the
standard theory applies. Someone who believes that standard quantum
theory will never be found to give incorrect predictions may consider this
essential, but for those of us who keep a more open, scientific mind it is
interesting to consider alternatives that give rise to predictions that differ
from those of the standard theory. Spontaneous collapse models are such
alternatives and so let us now construct a collapse version of the lattice
field theory.

In the original GRW dynamics, the wave function is a function of the
position of the particle. When a collapse happens it is centred on a particular,
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randomly chosen position and according to the Bell interpretation, that
position at that time—that event—is then real. We are considering a field
theory here and the quantum state is a functional of the field configuration
on a spacelike surface. So, now, collapses will be centred on field values
and it will be one, randomly chosen field configuration on the lattice that
will constitute reality in our model, which proceeds inductively as follows.

We start with a wave function Y(a|s0
) on a spacelike surface s0.

1. Suppose we have Y(a|sk − 1
) on surface sk − 1. At random, an ele-

mentary motion occurs and the wavefunction Y is evolved forward by the
unitary R-matrix associated with the single vertex, vk, crossed, to the new
surface sk. There the resulting wavefunction is Y(a|sk

).

2. A field value âL is realised on the new L link. The value is chosen
at random from {0, 1} according to the GRW probability distribution
(NL(âL))2 which will be defined shortly.

3. The wave function on the surface sk suffers a ‘‘hit’’ and becomes

YŒ(a|sk
)=

jaL âL
Y(a|sk

)
NL(âL)

(3.1)

where the GRW ‘‘jump factor’’ is given by

jaL âL
=

daL âL
+(1 − daL âL

) X

`1+X2
(3.2)

with 0 [ X [ 1 and the normalisation given by

(NL(âL))2=C
a|sk

j2
aL âL

|Y(a|sk
)|2 (3.3)

which is the probability distribution in step 2.
Just a word of explanation so that the notation is clear. The link, L, is

one of the links in sk and in Eq. (3.1) aL is therefore one of the field
variables in the argument of the wavefunction. For field configurations
on sk in which the variable aL agrees with the value âL (i.e., the realised
value) the amplitude for that field configuration is multiplied by the factor
1/(NL `1+X2) and otherwise the amplitude is multiplied by X/(NL `1+X2).
Thus the jump factor jL is chosen so that the amplitudes of field configu-
rations that agree with the realised value âL are enhanced over the ampli-
tudes of field configurations that do not by the ratio 1/X. For example, if
âL=1 then the effect of the multiplication of the wave function by the
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jump factor is to act on the two dimensional Hilbert space for the link L by
the matrix

1

`1+X2
R1 0

0 X
S (3.4)

where the first ( last) row is labeled by the state with aL=1 (aL=0).

4. A collapse occurs on the new right link, R, to a field value âR. The
value is chosen at random from {0, 1} according to the probability distri-
bution (NR(âR))2.

5. The wave function on the surface sk suffers a second ‘‘hit’’ and
becomes

Yœ(a|sk
)=

jaR âR
YŒ(a|sk

)
NR(âR)

(3.5)

where

jaR âR
=

daR âR
+(1 − daR âR

) X

`1+X2
(3.6)

and

(NR(âR))2=C
a|sk

j2
aR âR

|YŒ(a|sk
)|2 (3.7)

which is the probability distribution for step 4.

6. Go to step 1 where now it is the wavefunction Yœ that is evolved
forward by the R-matrix of the next randomly chosen vertex.

It will be convenient in what follows to refer to the realisation of a

values on the links R and L, outgoing from vk, as a single event at the
vertex, vk. The values {aR, aL} are summarised as avk

. The dynamics can
then be re-expressed as an elementary motion followed by a single realisa-
tion of value âvk

with jump factor

javk
âvk

— jaL âL
jaR âR

(3.8)

and probability distribution

(N(âvk
))2=C

a|sk

j2
av âv

|Y(a|sk
)|2. (3.9)
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A given ‘‘run’’ of the dynamics will generate a random sequence,
c={s1, s2,...}, of surfaces to the future of the initial surface, s0, each
related to the previous one by an elementary motion. A sequence c is
equivalent to a linear ordering of the vertices to the future of the initial
surface that is compatible with the causal order of the vertices (called
a ‘‘linear extension’’ of the causal order or a ‘‘natural labeling’’ of the
vertices).

The probability distribution generated by this dynamics is, as in the
Samolsian dynamics, a measure on the sample space, W, of all possible field
configurations to the future of s0. Strictly, what the dynamics gives is a
probability measure on certain subsets of W, the so-called ‘‘cylinder sets.’’
A cylinder set consists of all field configurations that agree with a given one
on a ‘‘partial stem’’ which is a finite set of vertices that contains its own
causal past (to the future of s0). Standard measure theory then guarantees
that this extends to a measure on the s-algebra generated by the cylinder
sets, that is all sets formed by countable set operations on the cylinder sets.

In the Samolsian dynamics, the probability distributions that are
conditioned on c are not equal. To obtain the full distribution, these are
summed over all c (all natural labelings of the vertices). Also, although the
probability distribution on the possible events at a vertex (i.e., field values
on a single outgoing LR pair) is independent of the R-matrices spacelike to
it, this is not true of the probability distribution on the events in a more
general spacetime region.

By contrast, and as anticipated by Samols, the enhanced locality
property of our collapse model means that the marginal probability distri-
bution on any collection of events is independent of the R-matrices at ver-
tices spacelike to the whole collection. Moreover, the probability distribu-
tions conditioned on c are equal to each other. These claims are proved in
the next section. This means that the order of evolution of the surfaces can
be considered to be genuinely without physical meaning (in contrast to the
Samolsian dynamics within which the sequence of hypersurfaces is without
operational meaning because a local observer cannot determine it). We can
still, if we wish, consider the full probability distribution to be given by a
sum over c of the distributions conditioned on c but the contribution from
each is the same. This is the analogue, in this setting, of general covariance:
the independence of the action of an unphysical labeling.

4. THE PROBABILITY DISTRIBUTION IS INDEPENDENT OF THE

SEQUENCE OF SURFACES

We show that the probability distribution is independent of the
sequence of hypersurfaces. Consider a sequence of surfaces, specified by a
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natural labeling of the vertices to the future of s0, {v1, v2, v3,...}. Let the
surface in the sequence just after the elementary motion across vk be
denoted sk and the two outgoing links from vk be Lk and Rk. The variable
avk

stands for {aLk
, aRk

}. Let the Hilbert space on sk be denoted Hsk
and

recall that it is the tensor product of 2N 2-d Hilbert spaces, one for each
link cut by sk. The state on sk, just after the evolution by the R-matrix at
vk − 1 but before the hit, will be denoted by |YkP, and the state after the hit
will be denoted by |Y −

kP. |YkP depends on the realised values {âv1
,..., âvk − 1

}
and |Y −

kP depends on {âv1
,..., âvk

}. They are related by

|Y −

kP=
J(âvk

) |YkP

Nk(âvk
)

(4.1)

where J(âvk
) is the linear operator defined as follows. J(âvk

) acts on the
four-dimensional Hilbert space associated with the outgoing links from vk

as the matrix:

J(âvk
)aLk

aRk
bLk

bRk
=jaLk

âLk
daLk

bLk
jaRk

âRk
daRk

bRk
(no sums). (4.2)

with jaLk
âLk

given by Eq. (3.2). J(âvk
) acts as the identity on the other

Hilbert spaces in the tensor product Hsk
.

Denote the R-matrix at vk by U(vk).
We claim that the probability that the field values {âv1

,..., âvn
} are

realised, given the sequence of surfaces c={s1, s2...}, is

Pc(âv1
,..., âvn

)=|J(âvn
) U(vn) J(âvn − 1

) U(vn − 1) · · · J(âv1
) U(v1) |Y0P|2.

(4.3)

Proof of Claim. By induction. The probability that av1
=âv1

is

Pc(âv1
)=|J(âv1

) U(v1) |Y0P|2. (4.4)

Assume that Eq. (4.3) is true for n=k − 1. Then

Pc(âv1
,..., âvk

)=Pc(âvk
| âv1

,..., âvk − 1
) Pc(âv1

,..., âvk − 1
) (4.5)

=|J(âvk
) |YkP|2 |J(âvk − 1

) U(vk − 1) · · · U(v1) |Y0P|2 (4.6)

=
|J(âvk

) U(vk) J(âvk − 1
) |Yk − 1P|2

|J(âvk − 1
) |Yk − 1P|2

× |J(âvk − 1
) U(vk − 1) · · · U(v1) |Y0P|2. (4.7)
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We may replace |Yk − 1P in the numerator and denominator of the
fraction by U(vk − 1) J(âvk − 2

) · · · U(v1) |Y0P as the normalisation factors
cancel out and the result follows.

From this we can see that the probability is unchanged by an exchange
of the order of any two successive spacelike separated vertices in c, say vl

and vl+1, because

[J(âvl
) U(vl), J(âvl+1

) U(vl+1)]=0 (4.8)

if vl and vl+1 are spacelike. Any order preserving list, c, of finitely many
vertices can be transformed into any other order preserving list, cŒ, of the
same vertices by a sequence of such exchanges. Thus, the probability dis-
tribution on {âv1

,..., âvn
} is independent of c.

We use this to show that the model satisfies what we call ‘‘external
relativistic causality.’’ By this we mean that external agents that exist in
spacetime in addition to the field and that can affect the field only by
changing the R-matrices locally at their spacetime position cannot use the
field to send superluminal signals. Suppose agent Alice is located in space-
time region A and agent Bob in region B such that all vertices of A are
spacelike to all vertices of B. Suppose Bob has some records of past events
in the causal past of B. Can Alice signal to Bob by manipulating the
R-matrices in A? This can only happen if the probability distribution on a
set of events in B, conditional on some collection of events in P(B) (the
causal past of B), depends on an R-matrix in A. This probability distribu-
tion can be calculated from the joint distribution on all events in B and
P(B), P(âB, âP(B)) where âB is shorthand for the a values in B etc. To cal-
culate these probabilities we may use any natural labeling of the vertices to
the future of s0. There exists a natural labeling that first labels the vertices
in P(B) and then those in B. Since A intersects neither B nor P(B), we see
that P(âB, âP(B)) is independent of the R-matrices in A.

The further question arises of whether the model satisfies ‘‘internal
relativistic causality’’ where this would mean that if the field were the entire
universe (with no external agents) no superluminal signaling could occur in
that universe. This demands that a definition of ‘‘superluminal signaling’’
be made in this case. Such a definition does not exist, but preliminary ver-
sions are being worked on. (10)

We may adopt a ‘‘Heisenberg picture’’ description and throw the
evolution onto the J’s by defining

Jvk
(âvk

)=U−1(v1) · · · U−1(vk) J(âvk
) U(vk) · · · U(v1). (4.9)
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Note that the R-matrices spacelike to vk can be commuted through the
expression and cancelled off with their inverses so that Jvk

(âvk
) only

depends on the R-matrices in the causal past of vk. Then (4.3) becomes

Pc(âv1
,..., âvn

)=|Jvn
(âvn

) · · · Jv1
(âv1

) |Y0P|2. (4.10)

We see an immediate similarity with the form of the probability of a
history in the consistent (or decoherent) histories approach to quantum
mechanics due to Griffiths, Omnès, Gell-Mann, and Hartle. Differences
with the consistent histories approach include the fact that the J operators
are, in general, not projectors (though they satisfy ; âvk

J2(âvk
)=1 and are

examples of what are known as ‘‘Kraus operators’’) and the histories are
not ‘‘consistent.’’

A translation of the nonrelativistic GRW model into this ‘‘historical’’
framework was made by Kent. (11) Connections between consistent histories
and collapse models and related theories of quantum open systems have
also been made by Diosi, Gisin, Halliwell, and Percival and by Brun. (12–14)

It seems possible, following Kent, following the consistent historians, to
adopt the causally ordered list of J operators,

{Jv1
(âv1

), Jv2
(âv2

),..., Jvn
(âvn)} (4.11)

as the specification of the history of which Eq. (4.10) is the probability.
That is, it appears that this is a possible alternative ontology for our model,
different from the field configurations (the J’s depend on the number X for
example, whereas the field configurations do not). Whether or not these
are genuinely different ontologies, and what that would mean if they
nevertheless produce the same predictions, seems a subtle question, beyond
the scope of the present paper.

5. DISCUSSION

The main value of our model is that it is very simple and straight-
forwardly illuminates many of the issues that arise in seeking realistic
alternatives to standard quantum mechanics. The model has a high degree
of locality built into it and external agents cannot manipulate it to produce
superluminal signals. However, there are ‘‘nonlocal correlations:’’ the
probability distribution on events at a vertex will generally depend on the
events realised at vertices spacelike to it. In Rideout and Sorkin’s termi-
nology, the model does not satisfy ‘‘Bell causality’’ (15) and so it has the
potential of reproducing the Bell-inequality-violating correlations that most
likely occur in nature.
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The simplicity of (4.10) and its connection to the consistent histories
formalism suggest numerous potential variations: different choices of the
jump or Kraus operators, branch dependence (where the choice of J’s at a
vertex can depend on events in its causal past), using a mixed state instead
of a pure state, and adding a final state.

With a given choice of R-matrices, the continuum limit may be
examined. This would be done by a procedure of coarse graining and
renormalisation of the X parameter, studying the limit of the probability
distribution to see if it tends to something well-defined. With some choices,
it is possible that the continuum limit could be one of the models studied
by Adler and Brun (16) as these share one of the main features of our lattice
model, namely that it is constructed using a locally, randomly evolving
surface. The Adler–Brun models display an unphysical large energy pro-
duction and we can ask whether our lattice model can be adjusted so as to
avoid this. For example, one variation of the model would be to let the
realisation of a field value on each pair of links have only a probability of
occurring which would have the effect of making the field configuration
sparser. The probability of realisation at a vertex could be fixed or could
vary according to events in the causal past.

Because of its extreme simplicity, the model seems well suited to
exploring the issue of ‘‘internal’’ relativistic causality, as mentioned above.
That is, we can try to formulate a definition of internal relativistic causality
for the model—some condition on the probability distribution on field
configurations—and then see if it is satisfied. It may be, however, that this
definition will also depend on the relationship of the field configurations to
the macroscopic world of experiments and experimenters and will be hard
to glean without this having been determined.

This is connected to the major question: what, if anything, do these
models describe physically? Do the realised field configurations exhibit
interesting behaviour or are they just too noisy to see any structure (note
that when the parameter X is chosen to be 1, the evolution of the state is
the standard quantum mechanical unitary evolution and the unrelated
probability distribution on the field values is that on a set of independent
variables which are 0 or 1 with probability 1

2). Do superpositions of
macroscopically distinct configurations—whatever that means in this con-
text—collapse onto one or other of those configurations, as we would
want? Simulations are being done to investigate these questions. (17)

These simulations may also throw light on the issue, raised by Kent, (18)

of the status of the quantum state in collapse models with the Bell inter-
pretation. We wish to say that the real variables are the field values alone.
For this to be a satisfying interpretation, it seems necessary, as Kent stresses,
that the quantum state on any spacelike surface be equivalent to the
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historical record of events to the past of that surface. If it were not so then
the information about the quantum state would be needed, over and above
the information about past and present events, in order to be able to make
predictions about the future. Denying the reality of the quantum state
would then be an awkward thing to have to do. The simulations in
progress will test the hypothesis that in the limit of late times, the proba-
bility distribution on future events depends only on past and present events
and not on the quantum state on the initial hypersurface. We could then
interpret the quantum state on a given hypersurface as a useful fiction, an
executive summary of the past that allows future prediction. If this turns
out not to be the case, however, one could still consider the model using
the interpretation in which the state is taken to be real.

The null lattice used here is special to 1+1 dimensions and this pre-
sents a difficulty in generalising our model to higher dimensions. However,
from the point of view of the causal set approach to quantum gravity,
spacetime is a continuum approximation to a discrete underlying substruc-
ture (reality) and this substructure is a causal set, which, as mentioned
previously, is a locally finite partial order. In the case of a continuum
approximation that is d+1 dimensional Minkowski spacetime (perhaps
identified on a d-torus) then the underlying reality is a causal set that can
be produced by sprinkling points into the spacetime by a unit density
Poisson process (i.e., the mean number of points in any region is equal
to the volume of the region in Planck units) and endowing them with the
partial order that they inherit from the spacetime causal order. The rules of
a collapse model on a background causal set would involve putting field
variables and associated Hilbert spaces on the links and unitary R-matrices
at the vertices—as described by Samols (2)—and supplementing this by
placing jump (Kraus) operators on the links also. This seems feasible. If
the observer independent successor theory to standard quantum theory
turns out to be something along these lines, involving the discrete causal
structure that underpins the spacetime continuum approximation, it might
then be said that the resolution of the measurement problem does indeed
involve gravity as many workers have suggested.
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